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ABSTRACT 

In th is  paper  I fo rmula te  cer ta in  conjec tures  re la t ing t he  s t r uc tu r e  of 

un ipo ten t  orbi ts  to au t omorph i c  representa t ions .  We consider  a few 

examples  and  prove some  of these  conjectures .  

1. In troduct ion  

One of the important problems in the theory of automorphic representations is to 

determine the set of Fourier coefficients these representations have. Knowledge 

of these Fourier coefficients is most crucial in many applications. For example, 

when one constructs a Rankin-Selberg integral, which is an integral consisting of 

certain automorphic forms, the Fourier coefficients of these automorphic forms 

are important in order to establish whether the integral is Eulerian or not. Such 

questions as uniqueness of a functional which is defined by a certain Fourier 

coefficient, are essential in determining if the integral is Eulerian or not. 

In recent years, knowledge of Fourier coefficients of automorphic represen- 

tations is also used to establish liftings from one algebraic group to another. 

For example, the descent method (see [G-R-S1]) which is used to establish the 

lifting between certain automorphic representations of GLn(A) to certain auto- 

morphic representations of classical split groups, relies heavily on knowledge 

of Fourier coefficients. In that method, one considers a certain residue of an 

Eisenstein series and studies a certain Fourier coefficient of this representation. 

Establishing the cuspidality of the lift and its non-vanishing relies completely 
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on knowledge of which nonzero Fourier coefficients the residue has, and which 

Fourier coefficient the residue does not have. 

The idea of connecting unipotent orbits to representations is not new and was 

considered in various cases by several authors. The basic reference for definitions 

and properties of unipotent orbits can be found in [S] or [C-M]. We will use this 

reference for the basic definitions we need. The idea is to use the structure of 

the unipotent orbits of a complex group and to associate with each unipotent 

orbit a set of Fourier coefficients. The way to establish this association was 

done in [G-R-S2] for the symplectic groups. We recall the precise definition 

in Section 2. Let G be a split algebraic group and let ~r be an automorphic 

representation of G(A).  Roughly, one defines the set (9o(~r) as follows. Recall 

that  the set of unipotent orbits of G(C) has the structure of partial ordering. 

A unipotent orbit O is in Oc(7~) if the following holds. For every unipotent 

orbit (.9' which is greater than (9, the representation 7r has no nonzero Fourier 

coefficient associated with (9'. Also, the representation ~ has a nonzero Fourier 

coefficient which is associated with the unipotent orbit (9. For example, if ~ is 

a generic representation of G(A) = GLn(A)  then Oe(~)  = (n). The minimal 

representation ~r of the group G(A) = S02n(A) satisfies (gG(~) = (2212n-4) �9 

For more on this set, see Section 2. 

As explained above, knowledge of the structure of the set (9o(~) is very 

important  for various applications. In [M] this set was studied for groups G 

defined over a p-adic field. Some of the results there were the motivations for the 

global analogues. For example, in [M] it is shown that  if G is a classical group, 

is supercuspidal and (9 6 0 a  (Tr), then (9 cannot be conjugated into a Levi part  

of a parabolic subgroup of G. Another result proved in [M] concerns the set of 

special unipotent orbits. It is proved there that  if 7r is an arbitrary representation 

of a classical group, then the set Oa(Tr) consists of special unipotent orbits. In 

[G-R-S2] some analogous results for automorphic representations are proved. 

For example, it is shown that  if ~r is an automorphic representation defined on 

the adele points of a classical group, then a unipotent orbit in (gG(~r) must be 

special. In Section 3 we quote this Theorem as Theorem 3.1 and indicate the 

idea behind the proof. 

We now give some details of the content of the paper. In Section 2 we recall 

some basic definitions and properties of unipotent orbits. We explain in detail 

how to associate with a unipotent orbit a set of Fourier coefficients. Then we 

give the precise definition of the set (ga (~r) and define some further operations on 

the set of partitions needed for other sections. Sections 3, 4 and 5 are devoted 
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to the set Oe(~r). In Section 3 we study this set for arbitrary automorphic 

representations ~r, and in Section 4 we study this set for cuspidal representations 

71". 

Section 5 is the main section of the paper. In this section we study the set 

(-ga(~-) where 7r is an Eisenstein series or any of its residues. The main part is 

to introduce some conjectures which relate the set OM(T) with the set Oa(Tr). 

Here M is a Levi part of a parabolic subgroup of G, and T is an automorphic rep- 

resentation defined on the group M(A). To get a better understanding, we first 

study in sub-section 5.1 these connections for the group GLn. In Propositions 

5.2 and 5.3 we find the set Ov(lr) for some important examples of represen- 

tations, like the Speh representations. Then, in Definition 5.5 we define the 

sets (9 max and (9 mh~ Motivated by the examples we consider, we introduce G G " 

in Conjecture 5.6 our main conjecture. In this conjecture we write down the 

expected maximal and minimal unipotent orbits which an Eisenstein series and 

its residues can obtain. Based on this conjecture we prove what we refer to 

as the Min-Max Principle. This is Proposition 5.8, which is based oil basic 

properties of partitions. In sub-section 5.2 we repeat, with appropriate modi- 

fications, these conjectures and relations, this time for other classical groups. 

The expected picture is quite similar. In sub-section 5.3 we vaguely mention 

the picture in the exceptional group G2. 

In Section 6 we define the notion of the graph of an Eisenstein series. In Sec- 

tion 5 we gave a conjecture of what we denoted by O~ ax and (.9~ i'1. It is natural 

to study the other unipotent orbits which correspond to other residue represen- 

tations corresponding to a specific Eisenstein series. We give some examples, 

but since the general situation is not clear we do not state any conjectures. 

Instead, we propose some further possible problems related to these questions. 

In Section 7 we give some examples related to the conjectures and the 

problems which were studied in previous sections. 

Finally, in this paper, as the title suggests, our main purpose was to introduce 

some conjectures relating the structure of unipotent orbits with Fourier coeffi- 

cients of automorphic forms. We do state and prove some examples to motivate 

our conjectures. Most of the proofs are based on ideas and proofs which appear 

in the literature and hence we prefer either to give a sketch idea of the proof, 

or just to refer the reader to other similar proofs. 

As mentioned above, the idea of establishing a correspondence between rep- 

resentations and unipotent orbits is not new. It was studied in detail in many 

cases, especially for finite groups of Lie type. Some other definitions that we 
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introduce, like the Gelfand-Kirillov dimension of a representation, are also not 

new (see, for example, [K] p. 158 and the references given there). 

ACKNOWLEDGEMENT: I would like to thank D. Jiang for many useful 

conversations regarding certain parts of this paper. 

2. Unipotent  orbits and Fourier coefficients 

In this section we will explain how to associate with a unipotent orbit a set 

of Fourier coefficients. As mentioned in the introduction this was done for 

symplectic groups in [G-R-S2]. We refer the reader to [C-M] for the basic 

notation and properties of unipotent orbits. 

The set of unipotent orbits for classical groups are parameterized by parti- 

tions. For the group G L n ,  the unipotent orbits are parameterized by the set of 

all partitions of n. For the group SP2n, the unipotent orbits are parameterized 

by all partitions of 2n such that  odd numbers occur with even multiplicities. For 

the orthogonal group S O n ,  they are parameterized by all partitions of n such 

that  even numbers occur with even multiplicities. For the exceptional groups 

there is the Bala-Carter  parameterization of the set of unipotent orbits. Let G 

denote a split reductive group. A partition a will be said to be G admissible 

if a corresponds to a unipotent orbit of G. When G is a classical group, it 

is convenient to identify the set of unipotent orbits of G with the set of all G 

admissible partitions. 

For any classical group G as above, there is the structure of partial ordering 

defined on the set of unipotent orbits. It is defined as follows. Suppose that  

a = ( r l r2  . . .  rm)  and b = (1112.. .  Im) are two unipotent orbits for a given group 

G, where we assume that  r l  >_ r2 >_ . . .  >_ rm > 0 and similarly for b. We say 

that  a _> b if r l  + . . .  + ri  >_ 11 + " .  + li for all 1 < i < m. For the exceptional 

groups one can find the partial ordering in [C]. 

We shall now explain how to associate with each unipotent orbit a set of 

Fourier coefficients. This set can consist of one member or can be infinite. 

We shall work this out in the classical groups. In the exceptional groups 

this correspondence is done in a similar way. Let a = ( m l m 2 . . . m p )  be a 

part i t ion which corresponds to a group G of rank n. We shall assume that  

ml  _> m2 ~ . . .  _> mp > 0. To each mi we associate the diagonal matrix 
diag(t (m~-l), t (mi -3) , . . . ,  t -(mi-3) , t - ( m i - 1 ) ) .  Combining all such diagonal ma- 

trices and arranging them in decreasing order of t ki , we obtain a one dimensional 

torus 
ha( t )  = diag(t (ml-1), . .  . ,  t - ( m 1 - 1 ) ) .  
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Since a is a partitiou of n it follows that  ha(t) can be realized as a torus 

element in the group G. For example, suppose that  a = (322). Then ha(t) = 
diag(t 2, t 2, t, 1, 1, t -1 , t -2, t-2). 

Let U denote the standard maximal unipotent subgroup of G. In terms of 

matrices we shall realize it as upper unipotent matrices. The one dimensional 

torus ha(t) acts on U by conjugation. Let a denote a positive root and let 

xa(r) be the one dimensional unipotent subgroup in U corresponding to the 

root (~. We have ha(t)x~(r)ha(t) -1 = xa(t~r) and since a is positive it follows 

that  i _> 0. O11 the subgroups xa(r) which correspond to negative roots a, 

the torus ha(t) acts with non-positive powers of t. This creates a partition on 

the set of all positive roots of G. Denote by U/ the set of all x~ (r) such that  

ha(t)x~(r)ha(t) -1 = x~(tir). Let L denote the subgroup of G generated by all 

x+(~(r) such that  ha(t)x~(r)ha(t) -1 = xa(r). Let C denote the stabilizer in L 

of any representative of the unipotent orbit defined by a. It is well known (see 

[C-M] or [C]) that  C is a reductive subgroup of L. To define the corresponding 

Fourier coefficients we first define the unipotent group V to be the subgroup of 

U generated by all x~ (r) E Ui such that  i >_ 2. Let A be the ring of adeles of 

a global field F. Let g; denote a nontrivial additive character of F \ A .  Let Cy 

denote any nontrivial additive character of V/[V, V] with points in F \ A ,  such 

that the stabilizer of ~by inside L(F) is the group C1 (F), and such that  over C 

the group C1 is of the same type as the group C. The group CI(F)  depends on 

the choice of the representative of the unipotent orbit that  we choose. When 

there is no confusion, we shall write C for the group C1. We extend Cy trivially 

to the group V(F) \V(A) .  
Let ~- denote an automorphic representation of the group G(A) and let 

denote a vector in the space of ~. We define 

(1) .Ta(~)(g) = f ~(vg)r 
Jv  (F)\V(A) 

We say that  the above Fourier coefficient corresponds to or is associated with 

the unipotent orbit a. We will say that  ~ has a nonzero Fourier coefficient 

associated with the unipotent orbit a if integral (1) is nonzero for some choice 

of data  and for some choice of representative of the orbit a. Conversely, if 

integral (1) is zero for every choice of data  and all representatives of a inside 

V(F), we will say that  u has no nonzero Fourier coefficients corresponding to 

the unipotent orbit a. Let Ua denote any representative of a inside the group 

V(F). We shall denote by f 'u ,  (~) the Fourier coefficient of u which corresponds 

to this specific representative. 
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Before considering a few examples, let us mention that integral (1) defines an 

automorphic representation on the group C(A).  

Examples: (1) Let G = GL4 and consider the unipotent orbit a = (22). Then 

ha(t) = diag(t, t, t -1, t - l ) .  In this case the group L = GL2 • GL2 and, as can be 

deduced from [C] p. 398, the group C equals GL2 embedded diagonally inside 

L. The Fourier coefficient (1), which corresponds to (22), can be chosen as ((1 x x)) 
f (  1 X 3 X4 (2) = F\A)'  1 g r  + x4)dx . 

1 

Thus, in this case there corresponds to a one Fourier coefficient. All others are 

conjugate to this one under the action of L(F). 

(2) Let G = Sp4 and suppose that  a = (22). The torus ha(t) is as in example 

(1), but  this time viewed as a torus element in G. The group L = GL:, and 

from [C] we deduce that  C is a one dimensional torus. The Fourier coefficient 

defined in (1) is now chosen as 

X:l) ) f (  1 Z (3) 2a(~)(g)  = F\A)3 ~ I g r + 7z)dxdydz, 

where /~, ~/ E F*. This time there are an infinite number of non-conjugate 

Fourier coefficients associated with (22 ) depending on which square classes the 

elements /3, "Y are in. For example, if 89' = - c  2, then C(F) is isomorphic to 

GLI(F). In other cases, the group C(F) will be isomorphic to an anisotropic 

group 02 (F) which depends on fl and ~. 

Let G denote a split reductive group. We recall the definition of the set 

Det~nition 2.1: Let ~ be an automorphic representation defined on the group 

G(A).  We define the set (.9G0r) as follows. A unipotent orbit (9 is in the set 

COc(Tr) provided the representation ~- has no nonzero Fourier coefficients 5r~(~) 

for all a which is greater than CO. Also, the representation 7r has a nonzero 

Fourier coefficient which is associated with the unipotent orbit CO. 

The notion of COa(~r) is well defined. Indeed, if ~ is not the trivial repre- 

sentation, then ~ has a nonzero Fourier coefficient associated with the minimal 

unipotent orbit. (This is the one orbit above the trivial orbit.) This follows from 
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the fact that  the Fourier coefficients which are associated with the minimal or- 

bit are the Fourier coefficients along the one dimensional unipotent subgroup 

corresponding to the highest root of G. 

Similarly, we define the set Oa(Tr) for representations on the covering groups. 

We will also need the notion of a co l lapse  of a unipotent orbit. Let G be 

a classical group of rank n and let a be any partit ion of n. Following [C-M] 

p. 99, we define the G collapse of a to be the largest unipotent orbit of the 

group G which is smaller than or equal to a. We shall denote this unipotent 

orbit by aa .  The fact that  this notion is well defined follows from [C] Lemma 

6.3.3. The precise definition of a a  is as follows. Assume that  G is a reductive 

group of type B. The other cases are defined similarly. Write a = (piP2. . .Pr) ,  

where Pi >_ pi+l and if necessary we allow zeros. If every even number in a 

occurs with even multiplicity, then aa  = a. Otherwise, let Pi denote the largest 

even number which occurs with odd multiplicity. Let pj be the largest integer 

occurring in a, such that  pj < Pi - 1. Notice that  pj can be zero. Replace p~ 

by pi - 1 and pj by pj + 1. Continue this process until we get a parti t ion where 

each even number occurs with even multiplicity. 

Examples: (1) Suppose G is of type D and let a = (8). Then aa  = (71). This 

is an example where pj = 0 for some j .  

(2) Suppose that  G is of type C and let a =  (7333). We h a v e p l  = 7 and 

pj = 3. We get a a  = (726432). 

We define two operations on the set of all partitions. Let a = (PIP2.. .Pr) 

be a partition of n and let b = (qlq2. . .qr)  be a parti t ion of m. We assume 

that  p~ >__ Pi+l and qi >_ qi+l, and by inserting zeros we may assume the same 

number r. We now define 

Definition 2.2: With the above notation we define the addition of a and b to 

be the partit ion of n + m defined as a + b = ((Pl + ql)(P2 + q2) . . .  (Pr + qr)). 

We also define the product of a and b to be the parti t ion of n + m defined as 

ab  = (PlP2. . .P~qlq2. . .  qr) and then rearranging the numbers in a decreasing 

order. 

Let a denote a G admissible unipotent orbit, where G is a reductive group. 

We shall denote by a s(c) the smallest special G admissible orbit which is larger 

than a. The fact that  this orbit is unique is proved in [C-M] Lemmas 6.3.8 and 

6.3.9. In these lemmas they also explain how to construct this orbit. When the 

group G is clear, we shall denote a s(C) by a s. 
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Finally, we recall the notion of the transpose of a partition (see [C-M] p. 65). 

Let a = (klk2 ... kr) denote a partit ion of n where ki _> ki+l > 0 for all i. We 

define the transpose of a to be the partition of n denoted by a t = (mlm2 �9 �9 �9 mr) 

where mj = I{i : ki _> J}l. Another way to describe the transpose of a partition 

is using the Young diagram. In this description we associate with a an array 

which consists of kl boxes in the first row, then k2 boxes in the second row, and 

so on. Then, the number ml is the number of boxes in the first column of this 

array, the number m2 is the number of boxes in the second column, and so on. 

For example, if a = (213) then a t = (41). 

3.  O n  t h e  s e t  OG(~) for  a u t o m o r p h i c  r e p r e s e n t a t i o n s  

Let 7r be an automorphic representation defined on the group G(A).  The 

following result, proved in [G-R-S2] for symplectic groups, was motivated by 

the result of [M] for local p-adic fields. We refer the reader to [C-M] page 100 

for the definition of special unipotent orbit. 

THEOREM 3.1: Let G be a classical group. Tile set OG(Tr) consists of unipotent 
orbits which are a11 special 

As mentioned above, the proof in [G-R-S2] is only for the symplectic group 

but  it is similar for the orthogonal groups. The proof in [M] is for any classical 

group. We briefly explain the idea of the proof. 

Let a be a unipotent orbit in O0(7~) and assume that  a is not special. We 

shall derive a contradiction. In section 2 we defined the sets Ui. For some 

unipotent orbits the set U1 is not empty. If this is the case, then the group 

Ui>_l/[Ui>2, U.i>2] is a generalized Heisenberg unipotent group. Here Ui_>l = 

U1U2...  (Jr, where r is the largest integer such that  Ur is not zero and Ui is 

zero for all i > r. Similarly, we define Ui>2. The group Ui>~ was denoted by 

V in section 2. This means that  the group C as defined in section two has an 

embedding inside a suitable symplectic group. It also means that  we can define 

a projection a from Ui>l onto a suitable Heisenberg group. As in [G-R-S2] p. 4 

we consider the following integral 

(4) f(h) =/U,>_I(F)\U,>_I(A) 8r162 

Here 8r r is the theta  representation defined on the double cover of a suitable 

symplectic group. Thus, the space of functions defined by (4) defines an auto- 

morphic representation on the group C(A),  that  is, on the double cover of the 
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group C. This representation can be genuine or not, depending on whether the 

group C splits under the double cover or not. It follows from the definition of 

special unipotent orbit that  the group C contains a unipotent subgroup. Also, 

and that 's  the key point, it follows that  the representation defined by (4) de- 

fines a genuine representation of C(A) if and only if the unipotent orbit a is 

not special. This is also proved in IN]. Using these two facts, we consider the 

one dimensional unipotent subgroup xa(r) which corresponds to the highest 

root a in C. It follows that  the group SL2 generated by x+~(r) does not split 

under the double cover, and hence when we restrict (4) to this copy of SL2, we 

obtain a genuine representation defined on the group SL2(A). We expand (4) 

along the unipotent group xa (r) with points in F \ A .  Since a genuine function 

on SL2(A) cannot equal its constant term, it follows that  it has at least one 

nontrivial Fourier coefficient. It is not hard to show that  this Fourier coeffi- 

cient corresponds to a unipotent orbit which is higher than a. This gives us a 

contradiction to the assumption that  a 60c(Tr) .  

It should be mentioned that  Theorem 3.1 is not true for covering groups. 

In [B-F-G] a small representation was constructed on the double cover of the 

odd orthogonal group. For that  representation we have (9e(r)  = (2nl) or 

(gG(Tr) = (2n13). These two unipotent orbits are not special. 

The situation in the exceptional groups is different. There are examples of 

unipotent orbits which are not special but that  the group C will split under the 

double cover. This already occurs in the exceptional group G2. The unipotent 

orbit labelled A1 is not special, and the group C is SL2. However, the symplectic 

embedding of C is into Spa via the symmetric cube representation. It is well 

known that  this embedding splits under the double cover. Nevertheless, we 

believe that  Theorem 3.1 still holds for the exceptional group G = G2. As 

indicated in [Sa], over local fields, the minimal representation is unique. We 

expect that  this will also be true for automorphic representations as well. It is 

not clear what happens in the other exceptional groups. 

In general, it is also not clear if (9c(~) can consist of more than one unipotent 

orbit. Clearly, if this is the case, then any two such unipotent orbits will have 

to be not related under the definition of the partial order. 

4. On the set 0o(~) for cuspidal representations 

In this section we will assume that  u is a cuspidal representation defined on 

the group G(A). We will say that  a is a cuspidal unipotent orbit for 7r if 

a 6 (-9G(u). In [M-W] the following local p-adic result is proved. Let u be a 
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supercuspidal representation defined on G(F), where F is a p-adic field. Then a 

is a cuspidal unipotent orbit for ~r provided there is a representative Us defined 

on G(F),  which cannot be conjugated inside a Levi part of some proper parabolic 

subgroup of G(F). It could happen that  there is another representative which 

can be conjugated inside a Levi part of some proper parabolic subgroup of G(F). 

We expect this result to be true for automorphic representations. However, we 

will state this result somewhat differently. 

The situation for the group G = GLn is clear. It is well known that  every 

cuspidal representation defined on GLn(A) must be generic. Thus, in this case 

we have Oc (~) = (n). It is also true that  this is the only unipotent orbit which 

cannot be conjugated into a Levi part of G. 

In [G-R-S2] the structure of Oc(7~) was studied for the symplectic group. We 

start with the general conjecture in this case 

CONJECTURE 4.1: Suppose that ~r is a cuspidal representation defined on the 

group Sp2n(A). If  a 60G(Tr) then a consists of even numbers only. 

For example, if G = Sp6, then the only possible cuspidal partitions are 

(6), (42) and (23). It is not hard to prove the conjecture for low rank sym- 

plectic groups. In general, the following holds. 

THEOREM 4.2 ([G-R-S2] Theorem 2.7): Suppose that G = ~P2n.  Then there 

exists a unipotent orbit a 6 Oa(u) such that a consists of even numbers only. 

Recall that  for some unipotent orbits a the corresponding set of Fourier co- 

efficients is infinite. This is indeed the case, for example, when G = Sp2~ and 

a consists of even numbers only. However, it is possible that some of the rep- 

resentatives can be conjugated inside a Levi part of a parabolic and some not. 

We thus expect that  if a 6 0 a  (Tr) and if the representative we choose can be 

conjugated inside a Levi part, then the corresponding Fourier coefficient will 

be zero for every choice of data. Consider, for example, the unipotent orbit 

a = (22) when G = Sp4, that  is, assume that  ~ is such that Oa(Tr) = (22). In 

section 2 we wrote down the set of Fourier coefficients which corresponds to this 

unipotent orbit. The set of all representatives inside Sp4 (F) corresponding to 

the unipotent orbit a = (22) is given by the set u(/~,7) defined by 

u ( f l , 7 ) =  [, 1 7 u o =  1 1 
1 ' 1 " 

\ 1 
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Here fi and 7 are defined up to a square class. As one can verify, in the case 

when ~ ,  = _e2 the matrix u(~,7  ) is conjugated inside Sp4(F) to the matrix 

u0. One can also verify that  only when ~7 = -e2, the matrix u(~,7)  can be 

conjugated in Sp4(F), inside a Levi part of a parabolic subgroup of Sp4. 

In this case, when fi7 = _e2 and (gG(~r) = (22), integral (3) is nonzero for 

some choice of data, if and only if the integral ((ix 
( 5 )  = 

\A)3 1 
x 

g 

1 

r 

is nonzero for some choice of data. Applying some Fourier expansions, one can 

show that  integral (5) can be expressed as a sum of Whittaker coefficients of ~r 

and a constant term along a unipotent radical of a maximal parabolic. By our 

assumption that  (gG(Tr) = (22), all the Whittaker coefficients, which correspond 

to the unipotent orbit (4), are zero. Since ~r is cuspidal the constant term is 

zero. This means that  integral (5) is zero for every choice of data. Notice that  

when fi7 = -e2 then the stabilizer C(F) contains the split group GL1 (F). 

We can generalize this example and conjecture 

CONJECTURE 4.3: Let r~ be a cuspidal representation defined over the group 

G(A). Let a E Oo(Tr) and assume that all numbers in a are even. Let Ua denote 

any representative of the unipotent orbit a inside the group G(F). Denote 

by Cua(F) the stabilizer inside L(F) of the element ua and by Y:u.(~o) the 

corresponding Fourier coefficient. Then Y:uo (qo) is zero for every choice of data 

if the group Cu~ (A) contains some unipotent subgroup. 

It is a natural question whether, given a unipotent orbit a which consists of 

even numbers only, there is a cuspidal representation 7r such that  a E OG(~r)? 

It seems that  this is indeed the case. For example, in [I] there is a construction 

of cuspidal representations 7r for Sp4n(A) such that  (.gc(~r) = (22n). This is 

of course the smallest cuspidal unipotent orbit for Sp4n. In [G-G] it is shown 

that  these representations are precisely the ones that  lift to SOsn(A) under the 

theta correspondence. Hence we can expect that  such representations exist for 

all symplectic groups. 

In [G] there are examples of cuspidal representations 7r defined such that  

(gG(~r) contains other partitions which consists of even numbers. For example, 

for the group Sp6 (A) the construction in [G] implies the existence of cuspidal 

representations 7r such that  (9~ (~r) = (42). 
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We also want to state the analogues of Conjecture 4.1 for orthogonal groups. 

We will do it for even rank groups, that  is for S02n. Let a be a unipotent 

orbit corresponding to the group S02n.  Since even numbers occur with even 

multiplicities, it thus follows that  the total number of odd numbers must be 

even. This means that  we can write a = (al . . .  arbl . . .  br) where ai > ai+l and 

ai >_ by for all 1 _< i , j  <_ r. Based on many cases we checked, we have 

CONJECTURE 4.4: Let 7r be a cuspidal representation defined over the group 

S 0 2 n ( A ) .  Suppose that a = ( a l . . . a ~ b l . . .  br) is a unipotent orbit in Oo(Tr) 

where G = S02n.  Then all ai and bj are odd numbers and ar > bl. 

For example, SOs has three unipotent orbits of this type. They are (71), (53) 

and (3212). As for the symplectic groups, it is not hard to prove the conjecture 

for low rank groups. 

Finally, in the exceptional groups it is also expected that  only part of the 

unipotent orbits will be in the set (9G(zr) when zr is a cuspidal representation. 

For the exceptional group G2 the only two that have this property are the two 

special unipotent orbits, the orbits G2 and G2(al).  We do not know the answer 

for the other exceptional groups. 

5. O n  t h e  se t  (.gG(Tr) for  E i s e n s t e i n  ser ies  

In this section we will give some conjectures regarding the set (_gG0r), where zr 

is an Eisenstein series or a residue of an Eisenstein series. The idea is to t ry  

to relate the structure of the set (gM (T) with the structure of the set (.gG (7r). 

Here M is a Levi subgroup of a parabolic subgroup of G and 7 an automorphic 

representation defined on the group M(A) .  By definition, the Eisenstein series 

depends on a choice of a set of complex numbers and so it is expected that  the 

answer will depend on that  choice. We start by fixing some notation. 

Let G be a split reductive group and let P denote a parabolic subgroup of 

G with Levi part  M. Let ~- denote an automorphic representation defined on 

the group M(A) .  Let E~(g,~) denote the Eisenstein series defined on G(A) 

corresponding to the induced representation ~nap(n)ZO P. Here $ = ( s l , . . . ,  st) 

denotes a multi-complex variable. Suppose that  M = HI x . . .  x Hr,  where Hi 

are some reductive groups. Let bi denote a unipotent orbit for the group Hi. 

With this notation, we shall denote by a = ( b l , . . . ,  br) a unipotent orbit for 

the group M. 

5.1 THE SET OG(Tr) FOR G = G L n .  It will be convenient to start  with the 

group G = GLn. In this case we have M = GLnl x . . .  x GLn,.. Let us show 
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how to associate with each unipotent orbit a an Eisenstein series. Assume 

that  a = ( k l . . .  k~) and suppose that  a t = ( m l . . . m l ) .  Let Pml,...,m~ denote 

the parabolic subgroup of GLn whose Levi part is GLml x ... x GLInt. We 

shall denote by E(g, ~) the Eisenstein series which corresponds to the induced 
T . G ( A )  rg representation ~na~ ~A~Op. This is a special case where we take ~- to be 

m 1 ~ . . . , m  I ~ ] 

the trivial representation. We have 

CONJECTURE 5.1: With the above notation, suppose that Re(si) is large. We 

then have OG(E(g, ~)) -- a. 

We shall illustrate this conjecture for maximal parabolic subgroups of G. We 

have 

PROPOSITION 5.2: For r <_ n - r, let Pn-r,r denote the maximal parabolic 

subgroup of G = GLn whose Levi part is GLn-r • GL~. Let E(g, s) denote the 
, G ( A )  cs Eisenstein series corresponding to the induced representation 1nap,, . . . . .  (A)Op. 

Then for Re(s) large, OG(E(g, s)) = (2~1~-2r). 

Proof'. We have to prove two things. First, we need to show that  given any 

unipotent orbit a for the group G, which is either bigger than or not related 

to (2rln--2r), then the representation E(g, s) has no nonzero Fourier coefficient 

which is associated with a. Then we have to show that  E(g, s) has a nonzero 

Fourier coefficient which is associated with (2r ln-2r) .  

TO prove the first part, let a = (k l . . .  kr) be any unipotent orbit which is 

bigger than or not related to (2tin-2*).  This means that  either kl > 3 or that  
a = (2ml n-2m) with m > r. Let 

(6) 2:a(g) = f E(vg, S)~v (v)dv 
Jy (F) \V(A)  

be the Fourier coefficient associated with the unipotent orbit a as defined by 

(1). For Re(s) large we unfold the Eisenstein series. Thus we need to study the 

space Pn-r,~\GLn/V and check that  every representative contributes zero to 

(6). Every such representative is of the form wu~, where w is a Weyl element 

and uw E U/V; recall that  U is the maximal unipotent subgroup of G. To prove 

this part  it is enough to show that  given wuw as above, we can find an element 

v C V such that  ~y(v) ~ 1 and (wu~)v(wu~) -1 E Pn-r,~. This is global, 

analogous to the Key Lemma 2 in [G-R-S3]. In a similar way to the proof of 

that  lemma, we can show the following. If for a Weyl element we can find v E V 

such that  ~v(v)  ~ 1 and wvw -1 E Pn-r , r ,  then we can find such a v for the 

element wuw. In other words, we need only consider Weyl elements. Assume 
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first that  a = (k l . . .  kr) is such that  kl > 3. Then one can check that  there 

are at least two one-dimensional unipotent subgroups of V, x~(r) and xz(r), 
which do not commute and such that  Cy(xa(r)) 7 ~ 1 and Cv(x~(r)) 7 ~ 1. Let 

U(Pn-~,r) denote the unipotent radical of Pn--r,r and let U(Pn-~,~)- denote the 

transpose of U(Pn-r,r). Since Weyl elements permute the roots, then for every 

one parameter  unipotent subgroup of V which corresponds to a positive root 

we have wvw -1 E Pn-r,r if and only if wvw -1 r U(Pn-r,r)-. Since U(Pn-r,r)- 
is abelian, it follows that  if a and fl are two roots which do not commute then 

either wxc~(r)w -1 • U(Pn-~,~)- or wx~(r)w -1 r U(Pn-~,r)-. But this means 

that  either wx~(r)w -1 E Pn-r,~ or wxz(r)w -1 E Pn-r,~. All this implies that  

if kl _> 3 then integral (6) is zero for each choice of data. 

Next assume that  a = (2rnl n-2m) with m > r. In this case, the group V in 

(6) is defined as 

V={v= 
x) 

I,~-2m : X E Matin• 
im 

The character Cv is defined as Cv(v) = r Once again, when unfolding 

the Eisenstein series in integral (6) it is not hard to check that  all representatives 

of Pn-r,r\GLn/V give zero contribution. 

To complete the proof of the proposition, we need to show that  integral (6) is 

not zero when V corresponds to the unipotent orbit a = (2~1n-2~). We unfold 

the Eisenstein series in integral (6) and, checking the double coset space, we get 

zero contribution from all representatives except from the Weyl element 

w : In-2r �9 

In this case integral (6) equals 

(7) Iv(n) f (wvg, s)~v (v)dv. 

It is clear that  this integral is factorizable and for Re(s) large it is nonzero. This 

completes the proof of the proposition. I 

Another set of interesting representations are the generalized Speh represen- 

tations. These representations were studied in [J]. To define them, let r denote a 

generic representation defined on the group GLm(A). Denote by Prm the max- 

imal parabolic subgroup of G = GLrm whose Levi part is GLUm . Let ET(g, ~) 
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denote the Eisenstein series defined on GLrm(A) corresponding to the induced 

representation IndGp,!AIA)(T I �9 I sl |  | ~'1" I s')SP!2 . It is well known that this 

Eisenstein series has a simple pole at the point 

( r - 1  r - 3  ( r - 3 )  ( r - l ) )  
' 2 ' " "  2 ' " 

We shall denote this residue representation by E~(9) = Res~=zoE~(9, g) and 

refer to it as the generalized Speh representation. For these residues we have 

PROPOSITION 5.3: With the above notation, we have OG(E~(9)) = (mr). 

Proo~ We sketch the details. Let a = (k l . . .  k~) be any unipotent orbit of 

G which is bigger than or not related to (m~). Clearly kl > m. Assume that 

ET (g) has a nonzero Fourier coefficient which is associated with a. Arguing as in 

[G-R-S2] Lemina 2.6 we deduce that E~(g) has a nonzero Fourier coefficient 

which is associated with the unipotent orbit (kl 1 m~-kl). As in [G-R-S1] The- 

orem 8, it follows that if an automorphic representation a of GLn(A) has a 

nonzero Fourier coefficient with respect to the unipotent orbit ( t l ln- t l ) ,  then 

it has a nonzero Fourier coefficient which is associated with (t21 n-t2) for any 

t2 < tl. From all this we deduce that if we can show that E~ (g) has no nonzero 

Fourier coefficient which is associated with ((m + 1)lmr--m-1), then it has non 

nonzero Fourier coefficient associated with any unipotent orbit which is bigger 

than or not related to (mr). 

The proof is similar to the proof of Key Lemma 2 in [G-R-S3]. We analyze the 

local unramified component of the residue which we denote by ~r(T). Arguing as 

in [G-R-S3] we deduce that n(~-) is a constituent of the induced representation 
\ c l / 2  Ind,,.,. (X1 | "'" @ Xm)OQ,.,,. Here Qrm is the parabolic subgroup of G whose 

Levi part is GL m. The characters Xi are certain unramified characters of the 

group GLr which depend on the representation 7. Since any global Fourier 

coefficient induces a corresponding local functional on each of its components, 

it is enough to prove that the representation ~-(7) has no nonzero local functional 

which corresponds to the unipotent orbit ((m + 1)lmr--m--1). Using the Bruhat 

theory it is enough to show that each double coset representative g E Q~m\G/V 
has the following property. For such g there is a v E V such that Cy (v) # 1 and 

gvg - t  E Qrm. Here V is the unipotent group which corresponds to the unipotent 

orbit ((m + 1)1 mr-m-i)  as defined in (1), and Cw is the corresponding local 

additive character. As in Key Lem,na 2 in [G-R-S3] and as we explained in some 

detail in the proof of Proposition 5.2, it follows that we may restrict ourselves 

to representatives which are in the Weyl group of GLint. Then arguing again 
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as in the above two references, we also deduce that  for Weyl elements we can 

find a v as above. We omit the details. 

Next, we need to show that  E~(g) has a nonzero Fourier coefficient which is 

associated with the unipotent orbit (mr). To describe the Fourier coefficient 

corresponding to this unipotent orbit, let V = Yrm denote the unipotent radical 

subgroup of Qrm. In terms of matrices, this group consists of all upper triangular 

matrices of the form 

Y r m - -  v ~  "*. gr �9 

I "r Xm-1 

Here xi C Matr• and the star indicates arbitrary entries. We define the 

character Cy on this group as Cy(v) = r + ... + trxm-1). Thus we have 

to show that  the integral 

IV(F)\ V(A) ET (vg)r (v)dv 

is not zero for some choice of data. The idea of the proof is similar to the proof 

of Proposition 2 in [G-R-S3] and to the proof of Theorem 1 and Lemmas 1 and 

2 in [G-R-S4] pp. 889-898. We shall sketch some of the details. Let w denote 

the Weyl element of G whose (km + i, (i - 1)r + k + 1) entry is one and zero 

elsewhere. Here, 0 < k < r - 1  and 1 < i < m. Conjugating in the above 

integral, by this Weyl element, we obtain 

fL(F)\L(A) /UI(F)\UI(A) Er(ullwg)~bl (Ul)d~tldl. 

Here U1 is a certain upper unipotent matrix, L is a certain lower unipotent 

matrix (these are exactly the unipotent matrices in V which the Weyl element 

w conjugates to lower unipotent) and ~/)1 is the resulting character from the 

conjugation on the group U1. Arguing as in the above references, we deduce 

that  the above integral is nonzero for some choice of data, if and only if the 

integral 

(8) fU(F)\U(A) E~ (ug)r (u)d~ 

is nonzero for some choice of data. To make this deduction we need to preform 

certain Fourier expansions and also use the fact, already proved, that  the residue 
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has no nonzero Fourier coefficients corresponding to any unipotent orbit greater 

than or not related to (mr). In the above integral, the group U is the maximal 

unipotent subgroup of G and for u = (ui,j) E U we define 

/, m--1 ) 

Cu(u) = r  (xi#+l + Zm+i,m+i+, +"" + 
\ i----1 

In other words, the above integral is an integration of the residue along the 

constant term of the parabolic subgroup Prm composed with the Whittaker 

functional on the Levi part of this parabolic. By our assumption the represen- 

tation 7 is generic. Hence we deduce that  the above integral is nonzero for some 

choice of data. This completes the proof of the Proposition. | 

All the examples so far indicate the following 

CONJECTURE 5.4: Let G = GLn and let 7r be a~l automorphic representation 

defined on the group GLn(A) .  Then the set OG(Tr) is a singleton. 

The above conjecture is true for all unitary representations of GLn(A).  

Conjecture 5.1 asserts that  all Eisenstein series which are associated with an 

induced representation from the trivial representation do satisfy Conjecture 5.4. 

In what follows we shall assmne that  Conjecture 5.4 holds. 

We continue to assume that G = GLn. The next natural problem is to study 

how the set (9G(Tr) varies as a function of the complex variable $, and as a 

function of the representation defined on the Levi part. To state our conjecture 

regarding the sets (ga(Tr), where ~r is an Eisenstein series or any of its residues, 

we fix some notation. Let Pal ..... n~ denote the standard parabolic subgroup of 

GLn whose Levi part is Mn~ ..... n,. = GLn~ • "'" • GLn,.. Fix a unipotent orbit 

a = ( b l , . . . , b ~ )  of M ~  ..... n~ where bi is a unipotent orbit for the group GLad. 

We introduce the following 

Definition 5.5: (1) With the above notation and assuming Conjecture 5.4, let 

OM (a) denote the set of all automorphic representations T = T1 | 1 7 4  Vr defined 

on Mnl ..... n, (A) such that  OM (T) = a. Here vi is an automorphic representation 

of GLn, (A) .  

(2) Let ,hi,, O G (a, E~-(g, $)) denote the set of smallest unipotent orbits (relative 

to the standard partial ordering) c of GLn such that  there exists T E (-9M (a) 

and some values of g such that  Oc(Tr) = c. Here 7r denotes the Eisenstein series 

E~ (g, $) or any of its residues. 

(3) Similarly, let (gmaX(a E~-(g, ~)) denote the set of largest unipotent orbits G k , 
(relative to the standard partial ordering) c of GLn such that  there exists T E 
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(_0M(a) and some values of ~ such that  Oc(~r) = c. Here 7c is as in the second 

part. 

(_Omin r a max Remark: A-priori, the sets o ~ ,E~(g,$)) and O v (a,E~(g,~)) may con- 

tain more than one unipotent orbit. However, in all examples known to me, 

these sets consist of one orbit. Henceforth we shall make this assumption. 

We consider a few examples. 

Examples: (1) Let G = GLrm and let Prm denote the parabolic subgroup 

of G whose Levi part  is Mrm = GLen. For 1 _< i _< r, let Ti denote any 

generic automorphic representation defined on the group GLm(A).  We denote 

by ~- = T1 | ' "| the corresponding automorphic representation defined on the 

group Mrm(A). Let E~(g, ~) denote the Eisenstein series defined on the group 
, . G ( A )  e ~  G(A) corresponding to the induced representation l n a p , . , , , ( A ) T o p , . ,  ' . Since each 

7~ is generic, it follows that  bi = (m) for all i and hence a = ( m , . . . , m )  is 

the corresponding unipotent orbit for the group Mrm. It is well known that  if 

Re( f )  is large then the representation Er  (g, ~) is generic. Hence we obtain that  
(.9 max [a 0 G (a, Er(g,$)) ,  we have to look for o ~ ,E~(g,g))  = (mr).  To compute min 

a representation T and values of $ such that  the unipotent orbit Ov(~r) will be 

the smallest possible. Here r denotes the Eisenstein series E~ (g, $) or any of its 

residues. This will happen if we choose all the Ti to be equal, and $ as defined 

right before Proposition 5.3. In this case we will obtain the Speh representation. 

It follows from Proposition 5.3 that  Oo(7r) = (m r) in this case. Thus, assuming 
(..Qnlin[- r3 / Conjecture 5.4, we have G ~a, ~ t g ,  s)) < (mr). To prove an equality we refer 

to the proof of Proposition 5.3. Even though it is stated only for the residue, one 

can apply the same arguments and show that  integral (8) is actually nonzero 

even if we replace the residue by the full Eisenstein series and take r to be any 

generic representation. Moreover, from the discussion before (8) one deduces 

that  this Fourier coefficient corresponds to the unipotent orbit (mr). From this 

it follows that  o~in(a ,  E~(g, s)) = (mr). 

(2) In the notation of Proposition 5.2, let G = GLn and denote by E(g, s) the 
, , G ( A )  ca  Eisenstein series corresponding to the induced representation Jnap,, _,.,. (A)op, ...... . 

In this case bl  = 0 n- r )  and b2 = (lr) .  Hence a = (1 n- r ,  lr) .  It follows 

from Proposition 5.2 that  for Re(s)  large we have O e ( E ( g , s ) )  = (2r ib - r ) .  

Hence we obtain (..Omax/a E ('~ G ~ , ~J,S)) = (2rln-~).  On the other hand, we know 

that  this Eisenstein series has the trivial representation as its residue. Hence 
(~min [ a  G ~ ,E (g , s ) )  = (ln). 

(3) We generate example (2). Let G = GLn and let a = ( l n l , . . . ,  1 n ')  

be the trivial unipotent orbit on the group Mn~ ..... n~ = GLn~ x . . .  • GLn,~. 
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Without loss of generality, assume that  nl _> n2 _ " "  _> n~. In this case 

the set (QM(a) contains only the trivial representation. Let E(g, g) denote the 

Eisenstein series defined on the group GLn(A)  corresponding to the induced 

representation Ind~ (A) 6 ~ Let c denote the unipotent orbit for ".a ......... (A) P"I ......... " 

the group GL,~ defined by c = (n ln2 . . .  n~). It follows from Conjecture 5.1 that  

for Re(g) large we have Oa(E(9,  s)) = c t.  Hence o~ax(a ,  E(9, g)) = c t. On the 

other hand, this Eisenstein series has the trivial representation as its residue, 

hence O m i n / a  O ~ ,E(g,g))  = (ln). 

From all these examples we deduce the following 

C O N J E C T U R E  5.6: With the above notation, and with the notation of Detinition 

2.2, we have 
O max ra G ~ ,E~(9,~)) = bl  + b2 + . . .  + br  

and 
o l n i n / a  E r G ~ , r~g,g)) = b l b 2 . . . b r .  

One can check that  the above examples do satisfy Conjecture 5.6. 

Remark: It follows from [C-M] that  bl  + b2 + " .  + b~ is the induced unipotent 

orbit from a denoted in the above reference as Indgpa. Here 7 9 corresponds to 

the parabolic subgroup Pn~ ..... n,.. 

The following lemma is contained in the proof of Lemma 7.2.5 in [C-M]. 

LEMMA 5.7: With the above notation, let a = ( b l , b 2 , . . . , b ~ )  denote a 

unipotent orbit for the group Mnl ..... n~ = GLnl x . . .  x GLad. Denote 

a t t t t = ( b l , b 2 , . . . , b r ) .  

Then 
(bl + b2 + + br) t  t t t . . . .  b i b 2 . . ,  b r. 

From this we deduce 

PROPOSITION 5.8 (The Min-Max Principle): With the above notation, and 

assuming Conjecture 5.6, we have 

rain t - ~'~nnax Za E / o c  = , 

This can also be written as 

o m a x  (a t ~ , ~ m i n / a  E / . 
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Example:  Let G = GL5 and let P2,3 denote the maximal standard parabolic 

subgroup of G whose Levi part is M2,3 = GL2 x GL3. In the following table, 

assuming Conjecture 5.6 holds, we list all possible values of omaxra E~(g, s)) G ~. , 
and (9 rain ta c ~ ,E~(g , s ) ) .  

(9) 

cominfa E (- comaxta a G ~ , r ~ u , s ) ) = b l b 2  G ~ ,ET(g , s ) )  = b l + b 2  
(2,3) (32) (5) 

(2,21) (221) (41) 
(2,13 ) (213 ) (312 ) 
(12,3) (312 ) (41) 

(12,21) (213 ) (32) 
(12,13) (15 ) (221) 

To demonstrate Proposition 5.8 we write down the list of all unipotent orbits 

of GL5 according to the partial order mentioned in section 2. We have 

(10) (5) > (41) > (32) > (312 ) > (221) > (213 ) > (15 ) 

Suppose, for example, that  a = (2,21). Then bl =- (2) and b2 = (21). 

Since b~ = (12) and b t = (21) it follows that  a t = (12,21). Hence, from (9) 
Omin(at g t~ it follows that  G ~ , T~v,s)) = (213). On the other hand, also from (9) 

we have (qmaxta E [- "~c ~ , T~g,s)) = (41). From table (10) we see that  (41) t = (213 ) 

as expected from Proposition 5.8. As another example, let a = (2, 13). Then 
a t (12 3) and hence ominra t = , c, ~ , E ~ ( g , s ) )  = (312). From (9) it follows that  
omaxraG t ,E~(g,s))  = (312). From (10) it follows that  (312) t = (312). 

To finish this section, let us mention that  this is only the starting point. In 

other words, given an Eisenstein series E~(g, 5) defined on the group G L n ( A ) ,  

then it can possibly have several residue representations. Proposition 5.8 demon- 

strates the unipotent orbits corresponding to the Eisenstein series in general 

position, and to the smallest possible residue. The other residues should corre- 

spond to inter-median unipotent orbits. We shall discuss this in some detail in 

section 6. 

5.2 THE SET OG(Tf ) FOR OTHER CLASSICAL GROUPS. In this section we sketch 

the conjectures stated for G L n  in the previous sub-section, this time for the 

other classical groups. Let G denote a split symplectic or orthogonal group of 

rank n. Let Pnl ..... n,.,m denote the standard parabolic subgroup of G whose 

Levi part is Mnl ..... n,.,m = GLn~ • "'" • GLn,. • Hm,  where Hm is a reductive 

group of the same type of G but with rank m which is smaller than n. Let 

(r, a) = rl | �9 �9 �9 | Tr | a denote an automorphic representation defined on the 
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group M ~  ....... .,m (A). Here, each ri is a representation of GLn, (A) and a is a 

representation defined on the group Hm(A). 

Since no unipotent orbit corresponding to G is special, it follows from 

Theorem 3.1 that  analogous to Conjecture 5.1 for the other classical groups 

is 

CONJECTURE 5.9: Let c denote a special unipotent orbit for the group G. 

Then there exists an automolphic representation rr, defined on G(A) such that 

= e .  

It is not hard to verify this conjecture for low rank groups. 

Things are also different as regard to Conjecture 5.4. In other words, it is not 

clear if the set OG(rc) is a singleton, or if there are examples of representations 

such that  there are more than one unipotent orbit in this set. However, we do 

expect the following to hold. 

CONJECTURE 5.10: Let 7r denote an automorphic representation defined on the 

group G(A). Suppose that cl and e2 are both in OG(~r). Then dime1 = dimc2. 

(For the definition of the dimension of a unipotent orbit, see [C-M] Corollary 

6.1.4.) 

In the remainder of these notes we shall make the following 

ASSUMPTION 5.11: Henceforth, we shall restrict our attention to the set of all 

automorphic representations rl defined on G(A) such that OG(r~) is a singleton. 

To state our conjecture, let a = ( b l , b 2 , . . .  , b r , d )  denote a unipotent orbit 

for the group Mn~ ..... n,-,m. Here, each bi is a unipotent orbit for the group GL,,, 

and d is a unipotent orbit for the group Hm. As in Definition 5.5, we have 

Definition 5.12: (1) With the above notation, let C0M(a) denote the set of all 

automorphic representations (v, a) = rl |  | Tr | a defined on Mnl ..... n,.,,~(A) 

such that  a E C9M(7). Here, T/ is an automorphic representation of GLn, (A) 

and a is an automorphic representation of the group Hm(A). 

(2) Let ominta E t'- ~'~'~ G k , T,a~Y, )J denote the set of smallest unipotent orbits e of G 

such that  there exists (~-, a) E OM(a) and some value of $ such that  OG(Tr) = e. 

Here, Ir denotes the Eisenstein series Er(9, ~) or any of its residues. 

(3) Similarly, let O'n~Xta c ~ ,ET,a(9,$)) denote the set of all largest unipotent 

orbits e of G such that  there exists (T, a) E OM (a) and some value of $ such 

that  Oc(Tr) = e. Here, 7r is as in the second part. 



344 D. GINZBURG Isr. J. Math. 

We emphasize that  this definition is valid under Assumption 5.11. However, 

we do believe that  if we remove that  assumption one should be able to modify 

Definition 5.12 accordingly. 

Example: Let G = SP4n and let P2n denote the Siegel parabolic subgroup 

of G, that  is, the parabolic subgroup whose Levi part is M = GL2n. Let T 

denote any generic representation of GL2n. Thus, we have OM(T) = (2n) and 

a = bl = (2n). Let Er(g ,s)  denote the Eisenstein series defined on G(A) 

corresponding to the induced representation lnap,2,(A)TOp2,. It is well known 
O max [ a  that  if Re(s) is large, then E~(g,s) is generic. Hence a t , E,(g,s)) = (4n). 

On the other hand, let T denote a cuspidal representation such that  the exterior 

square L function has a simple pole. In this case, the Eisenstein series E~(g, s) 

has a residue at s = 1 and, if we denote this residue by ET(g), then it follows as in 

[G-R-S1] that  Oo(Er(g)) = ((2n)2). Arguing as in [G-R-S1] and in a similar way 

to Example 1 after Definition 5.5, we deduce that  O min a (a, Er(g,s)) = ((2n)2). 

Now we can state the analogy of Conjecture 5.6. For simplicity, we shall 

assume that  G is either Sp2, or S02n. We have 

C O N J E C T U R E  5.13: With the above notation, we have 

O max {a = v ~ ,Er,,~(g,~)) ((2b:t + 2 b 2  + ' " + 2 b r  +d)G)  s(a), 
(-O min [a a ~ , Er,~(g, g)) - (blblb2b2 .. b rbrd)  S(o). 

Here, 2bi = bl + bi and the definitions of ca and c S(a) are given in section 2. 

Notice that  blblb2b2. . ,  brbrd is G admissible if and only if d is Hm admis- 

sible. Hence we don't  need to compute the G collapse of babab2b2. . ,  brbrd.  

As in the GLn case, it follows from [C-M] Theorem 7.3.3 that  

(2bl  + 2b2 + -.- + 2br + d)G 

is the induced unipotent orbit corresponding to a and the parabolic subgroup 

Phi ,,..,n,.,m �9 

Example: Let G = Sps. In the following two tables we shall list the unipotent 

orbits ( (o~ax(a)a)  S and "-'a/'~min/~St"J (we omit reference to the Eisenstein series 

in the notation), for all four maximal parabolic subgroups of G. The first table 

contains the relevant values for the Eisenstein series ET,z(g, s) of two maximal 

parabolic subgroups. The left hand side corresponds to the maximal parabolic 

subgroup whose Levi part is GL4, and the right hand side to the parabolic 



Vo|. 151, 2006 C E R T A I N  C O N J E C T U R E S  345 

subgroup whose Levi part is GL2 x Sp4. 
(11) 

(.gmin(a~S romax [a~ ~S omin (a)S (o~ax(a)G)S 
a G t ) t a t ) a )  a a 

(4) (44) (s) (2,4) (422 ) (s) 
(31) (3212 ) (62) (2,2 =) (24 ) (62) 
(22 ) (24 ) (42 ) (2,14 ) (2214 ) (4212 ) 

(211 ) (2214 ) (422 ) (12,4) (4212 ) (62) 
(14 ) (18 ) (24 ) (12,22 ) (2214 ) (42 ) 

(12,14 ) (1 s ) (3212 ) 

The left hand side of the following table corresponds to the parabolic subgroup 
whose Levi part is GL3 x SL2, and the right hand side to the parabolic subgroup 
whose Levi part is GL1 x Sp6. 
(12) 

min S rain S a O G (a) ((9 max G (a)G) z a ((-9 G (a)G) 0 c (a) max S 
(3, 2) (322) (8) (1, 6) (62) (8) 

(21, 2) (24) (62) (1, 42) (4212) (62) 
(13 , 2) (2214 ) (422 ) (1,32 ) (3212 ) (42 ) 
(3, 12 ) (3212 ) (62) (1, 23 ) (24 ) (422 ) 
(21, 12 ) (2214 ) (42 ) (1,2212 ) (2214 ) (4212 ) 
(13 , 12) (18 ) (322) (1, 16 ) (1 s ) (2214 ) 

Notice that we did not include the unipotent orbits which correspond to non- 
special orbits. For example, on the right hand side of table (11), we did not 
include the case where a = (2,212). That  is because the unipotent orbit (212) 
is non-special for the group Sp4. 

As an example for the construction of the above tables, consider the entries 
corresponding to a = (12,4) on the right hand side of table (11). In this case 
bl = (12) and d = (4). We have b l b l d  = (414). This partition is Sp8 admissible 
but not special. Since (414) S = (4212), this is the value corresponding to 
(~min ( ~  S a t"J �9 We also have 2bl  + d = (62), which is Sps admissible and special. 
Hence, this is the value for max S (O c (a)c) . As another example, consider the 
entry a = (1,32) on the right hand side of table (12). In this case, b l b l d  = 
(3212) and 2bl  + d = (53). Since (53)~ = (42), we obtain the indicated values 
for this case. 

To consider the analogy of Proposition 5.8 to the classical groups, let us first 
consider the example of Sp8. We list all the special unipotent orbits for this 



346 D. GINZBURG Isr. J. Math. 

group according to the partial order in this case. We have 

(13) (s) 
I 

(62) 

I 
(42 ) 

I 
(422 ) 

J 
(4212 ) (322) 

(3212 ) 
I 

(24 ) 

I 
(2214 ) 

I 
( i  s ) 

As can be seen all the above examples satisfy the following 

PROPOSITION 5.14 (The Min-Max Principle): With the above notation and 

assuming Conjecture 5.13, we have 

-- o m a x / a  o~in(at ,ET(g,s))  G ~ ,Er(g ,s ) )  t" 

This can also be written as 

omaXl"at E ;~ = 0 minga C ~ , ~t~',8)) C k ,E~(g,8)) *" 

5.3 THE SET OG(?r) FOR THE EXCEPTIONAL GROUPS. In the case when G is 

an exceptional group we expect a similar situation as in the classical groups. 

However, it is not so clear what are the precise statements. We do have some 

indications that  an analogous Min-Max principle should hold. We shall vaguely 

give some details. 

It clearly holds for the exceptional group G2. In this case we have 

man S OG (a) G2 a 0 o (a )  ,.~,, s 

(2) G2(a l )  62  I 
(14) (12 ) 1 az (a , )  a2(a l )  

I 
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To explain (14), we recall that  G2 has two maximal parabolic subgroups and 

three special unipotent orbits. The three unipotent orbits and their correspond- 

ing ordering are listed on the rightmost column. The first three columns are 

the minimal and maximal orbits corresponding to the Eisenstein series corre- 

sponding to the induced representations from the maximM parabolic subgroups 

of G2. These two parabolic subgroups have the Levi part  GL2. 

5.4 A DIMENSION FORMULA. In this section, we would like to prove a simple 

formula regarding the dimension of the set O~aX(a,E~-(g, 8)). Let 7r be an 

automorphic representation defined on the classical group G(A),  and assume 

that  Oa(Tr) = c. (In particular, we assume Conjecture 5.4.) In [C-M], the 

notion of the dimension of a unipotent orbit is defined. In [C-M] Corollary 

6.1.4, they compute the dimension of these orbits. Following [K]p.  158 remark 

3 and the references given there, we introduce the following 

Definition 5.15: With the above notation we define the Gelfand-Kirillov 

dimension of ~r to be dim c/2,  and denote this number by dim ~r. 

Let P denote a parabolic subgroup of G whose Levi part  is M and with 

unipotent radical U(P). Let 7- denote an automorphic representation defined 

on the group M(A) .  We shall assume that  OM(T) = a is a singleton. Suppose 

that  M = M1 • . . .  • Mr and assume that  T = T1 | "'" | ~-r. In this case we 

define dim T = dim T1 + "'" + dim Tr. 

The following proposition is a trivial consequence of Conjectures 5.6 and 5.13. 

We include it to emphasize the relation between the Gelfand-Kirillov dimensions 

of the representations in question and the dimension of the group U(P). It would 

be nice if a similar relation could be found for dim rain oG (a, 

PROPOSITION 5.16: With the above notation and assuming Conjectures 5.6 
and 5.13, we have the identity 

dim O~aX(a, Er(g, 8)) = dim T + dim U(P). 

Proof: We shall give a proof for the case G = GLn. In this case, we can identify 

unipotent orbits with partitions of n. Let ,k = (klk2... kp) with ki 7__ ki+l be 

a given partition. Then the dimension of A is given by dim A = •2 " Ei=lP 8i2 
where si = I{J :dj 7__ i}[. A simple computation implies that  

dim A = n 2 - (kl + 3k2 + 5k3 + . . .  + (2p - 1)kp). 

Denote by Sx the sum in the parentheses on the right hand side of the above 

equality. 
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For the group GLn we have M = GLn, x . . .  x GLn,.. Also, if a = ( b l , . . . ,  br) 

we shall denote, for all 1 _< i _< r, by ki the partition corresponding to the 

unipotent orbit bi. Thus we have 

r 

1 E(r~ _ S~,). dim r = dim ri = -~ 
i=1 i=1 

Also, we have dimU(P)  = ~l<_i<j<_rninj. From Conjecture 5.6 we have 

Omaxa ~ ta, E~ (g, ~)) = b l + "'" + br.  This implies that 

omax ra 1 dim G t , E r ( g , s ) ) = - ~ ( ( n l  + " ' + n r ) 2 - S M + . . . + ; % )  �9 

Hence to prove the Proposition it is enough to show that  S~, + . . .  + S~,. = 

S~+...+~,. This is verified easily from the definition of Al + " �9 + A~. | 

6. T h e  g r a p h  o f  an  E i s e n s t e i n  ser ies  

omax/a 7~) In section 5 we have established a conjectural formula for the sets G ~ , 

and ominra 7r ~ where ~ is an Eisenstein series and a is a unipotent orbit cor- G ~, , ], 

responding to the Levi part of the parabolic subgroup from which we induce. 

Since an Eisenstein series can have several residues at various points, it is nat- 

ural to consider the sets CO(rd) where 7r' is a residue of the Eisenstein series 

r~. To avoid problems of intertwining operators, we shall only consider those 

residues which correspond to points in the positive Weyl chamber. In fact, the 

set 0 ruing ~ra, ~) is conjectural for the set which corresponds to a certain residue 

of ~. To make things clearer, let us start  with a simple example from the group 

G = GLn. 

Let n = m + k and assume that  m >_ k. Let Pm,k denote the standard max- 

imal parabolic subgroup of GLn whose Levi part is GLm x GLk. Let E(g, s) 

denote the Eisenstein series defined on the group GLn(A)  which corresponds 
r , G L , , ( A )  c s  to the induced representation lnap, n,~(A)op,,,,. It follows from Proposition 5.2 

that  omaxraa ~ , E(g, s)) = (2 kl m-k) where a = (1 m, lk). Since the identity rep- 

resentation is clearly a residue of this Eisenstein series, it thus follows that 
o m i n / a  E r (lm+ k) 

G 

This Eisenstein series can have more residual representations. In fact, it 

is not hard to check that  the poles of E(g, s) are determined by the poles of 
k 

I-ii=l ( ( n s -  ( n - i ) ) .  We consider those residues which occur when Re(s) > 1/2. 

This last product has simple poles at si = (n - i + 1)/n where 1 < i < k. Let 

us denote Oi(g) = Ress=s~E(g, s). In a similar way to [G-S] (see also [W] for 
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the local version) one can show that O(0i) = (2ilm+~-2i). We can state this 

result as follows. Given any unipotent orbit ,~ such that  Omin/a G ~ , E ( g , s ) ) < A <  
omax(a E I- 8 ~ there exists a residual representation 0 of E(g,s) such that  G ~. , KY, )), 
oG(0 )  = 

It is natural to introduce the following 

Definition 6.1: Let E~(g, ~) denote an Eisenstein series defined on a reductive 
. . G ( A )  c ~  group G(A) associated with the induced representation lnap(A)TO P. Here, P 

is a parabolic subgroup of the group G, and T is an automorphic representation 

defined on the Levi part  of P.  Let 7r denote Er(g, ~) or any one of its residues. 

Denote by Fa (Er (g ,  $)) the set of all unipotent orbits A for the group G, such 

that  there exists 7r as above with Oc(Tr) =/k. We call Fc(E~(g,  ~)) the graph of 

the Eisenstein series E~ (g, $). (Let us remark that  in this definition we assumed 

that  O(~r) is a singleton.) 

In the above example for the group GLm+k it follows that  Fa(E(g,s)) = 
{(2il m+k-2i) : 1 <__ i <_ k}. As another example, let E(g,$) denote the 

Eisenstein series defined on GLn(A) associated with the induced representa- 
T .GLn(A)~ tion 1naB(A) 0 B. Here B is the Borel subgroup of GLn. It is not hard to 

show that  any degenerate Eisenstein series defined on GLn(A) is a residue of 

E(g, ~). In view of Conjecture 5.1, one expects that  FG(E(g, ~)) will contain 

every unipotent orbit of the group GL,~. 
It is clear that  if A 6 FG(E~(9, ~)) then A < omaX(a - c ~ ,E~(g,~)).  It is not clear 

O lain/a E ~ that r [ , r ig,  S)) < A; however, we expect this to be true. Clearly this 

is true if E~(9, ~) is a degenerate Eisenstein series, since then rain O G (a, E~(g, ~)) 
corresponds to the smallest unipotent orbit of the group G. It is possible that  

A = Omaxta E~(g,$)) and that  A = OG(Tr) where 7r is a residue of Er(g,$). G k , 
This can be seen from the following example. Let G = Spa, and let E(g, s) 
denote the Eisenstein series defined on G(A) corresponding to the induced rep- 

r ,G(A) es resentation lnap(A)O P. Here P is the standard maximal parabolic subgroup 

of G whose Levi part  is GL2. Clearly we have omaxH12~a ~ j,E(9, s)) = (22) and 

o~in((12),E(g,s)) = (14). One can easily check that  this Eisenstein series 

has two residual representations. First we have the identity representation, and 

there is also another nontrivial one, which we denote by 7r. Since (14) and 

(22) are the only special unipotent orbits which are less than or equal to (22) 

(the unipotent orbit (212) is not special), it thus follows that  Oc(Tr) = (22) = 

O~ax((12),E(g,s)). 

At this point, we are not in a position to state some conjectures regarding the 

structure of a graph of an Eisenstein series. However, from the above examples 
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and others, some similarities occur which we would like to point out. To make 

things clearer, let us focus on Eisenstein series corresponding to induction from 

maximal parabolic subgroups. In other words, let E~ (g, s) denote an Eisenstein 

series corresponding to an induction from the automorphic representation 7 

which is defined on the Levi part of a maximal parabolic subgroup of G. Assume 

that  all poles of ET(g, s) are simple. For 1 < i < n, denote by 7ri the residues of 

this Eisenstein series at the point si where we assume that Re(si) < Re(si+l). 
Let O(7ci) = Ai. (We assume that  O(~ri) are all singletons.) Based on the above 

examples, it is natural to ask the following questions. 
(1) Is it true that  o m i n / a  E ( 0  _ _ . . .  _ _ G k , rl, y , 8 ) )  < "~n < < ,~l < o~)ax(a,E(g,s))? 
(2) Consider the set of all unipotent orbits of G as a graph. By that  we mean 

the following. Let # and A be two unipotent orbits and assume tha t  # < A. We 

then connect these two partitions by an edge, if there is no unipotent orbit v such 

that  # < v </k. This way we may view the graph Fa(ET(g,s)) as a subgraph 

of the graph which consists of all unipotent orbits�9 Is it true that Fa(E~(g, s)) 

is a connected subgraph? There is of course the problem of how to treat the 

non-special unipotent orbits, if they exist. As follows from Theorem 3.1, if 

is a unipotent orbit which is not special, then there are no representations 7r 

defined on the group G(A) such that  Oo(Tr) = A. When we ask if Fo(E~(g, s)) 
is connected, it is not clear if one should ignore the non-special orbits or maybe 

adjust the definition of the graph in a suitable way. See the next section for 

some more explanation. 

7. S o m e  e x a m p l e s  

In this section we will give some examples for Conjecture 5.6, and an example 

related to the questions posed in Section 6 related to the graph of an Eisenstein 

series. We start with 

(1) Let G = GL3. Let T denote an automorphic representation defined on the 

group GL2 (A). Let P denote one of the maximal parabolic subgroups of G. Its 

Levi part is GL2 • GL1. Let E~(g, s) denote the Eisenstein series defined on 
�9 G ( A )  s GL3 (A) corresponding to the induced representation Indp(A)TSp. The relevant 

table for this case is 

(15) 
m i n  O max a a 0 a (a) O ( )  

(2,1) (21) (3) 
(12, 1) (13 ) (21) 

The second row is clear. It corresponds to the case when r is the trivial represen- 

tation on GL2 (A). Clearly, the Eisenstein series is not generic for all values of 
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s, and it is also clear that  one can obtain the identity representation on GL3 (A) 

as a residue of this Eisenstein series. 

The first row of (15) corresponds to the case when T is generic. If we take 

Re(s) large, then it is well known that  ET(g, s) is generic. Hence the rightmost 

entry in the first row. Since ~- is generic, it is either a cuspidal representation or 

an Eisenstein series. In this case we cannot obtain the identity representation 

of GL3(A) as a residue of E~(g, s). Hence (_gmintf2 G ~ , 1)) is at least the unipotent 

orbit (21). 

Thus, to verify the second entry on the first row, we need to find a generic 

representation T and a certain value of s such that  (_9a(Tr) = (21), where 7r is 

the above Eisenstein series or any of its residues. In this case we will look for a 

residue. 

Let T = E(h, u) denote the Eisenstein series defined on the group GL2(A) 
T . G L 2 ( A ) c v  corresponding to the induced representation 1naB(A) OB2. The poles of the 

Eisenstein series E~(g, s) are determined by its constant terms. It is not hard 

to check that  the poles of this Eisenstein series are determined by 

; (3s  + u - 2);(3s - u - 1) 

{(3s + u -  1 ) ~ ( 3 s -  u) 

For Re(u) large, if we choose s = (u + 2)/3 then E~(g,s) has a simple 

pole. Denote this residue by E~(g) = Res~=(~+2)/3E~(g,s). To show that  

this residue representation is not generic, we proceed as follows. Consider a 

non-archimedean unramified place for the Eisenstein series. The local repre- 
]-~GL3 .,~X1/2 sentation is -'~ /,~B " Here, B is the Borel subgroup of GL3 and ~: is the 

character of the torus of GL3 defined as 

x(diag(a, b, c)) = la] (4~-1)/3 ]bl2(1-v)/3[c1-2(v+1)/3 
= la](4u-1)/3 Ibcl(-nu+l)/6 Ibc -1 I1/2" 

From this, we deduce that  the unramified component of the residue is a con- 

stituent of Ind~L3)~r~lQ/2 where Q is the other standard maximal parabolic sub- 

group of GL3 whose Levi part  is GL1 x GL2. Also, for (a, h) ~ GL1 • GL2 we 

have ~('((a, h)) = lal(n'-l)/31dethl(-4v+l)/6. It is easy to see that  this last in- 

duced representation is not generic. From this we deduce that  (9(Ev (g)) = (21). 

Hence we have proved that (gmin[t2 1~ = (21). G \ \  , ] 

A somewhat more interesting example is 

(2) Let G = Sp6. Let P denote the standard maximal parabolic subgroup 

of G whose Levi part  is GL2 • SL2. Let r and a denote irreducible generic 

representations of GL2(A) and SL2(A),  respectively. Let ET,~(g, s) denote the 
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O(A) 8 Eisenstein series corresponding to the induced representation Indp(A)(T | a)~p. 
In this example, we would like to compute the sets omin((2 2 ~ and o'nax{(2 2 ~ G kk , ]1 G kk , ) )  

and to determine the graph Fc(Er,~(g, s)) of this Eisenstein series. Since for 

Re(s) large this Eisenstein series is generic, it follows that  omaxt/2c ~ ,2)) = (6) 

Since T and a are generic, they are either cuspidal representations or Eisenstein 

series. Thus, if T and a are unitary, then the poles of Er,~(g,s) are deter- 

mined by the poles of LS(T x a, 5(s -- 1/2))LS(T, A 2, 5(2S -- 1)). Here S is a 

finite set of places, including the archimedean places, such that  outside of S all 

representations are unramified. It is well known that  after fixing ~- and a, the 

representation Er,~(g, s) cannot have a pole at sl = 7/10 and s2 = 6/10 at the 

same time. 

Assume that  ~- and a are both cuspidal representations and are such that  

LS(T • 0-,5(8 -- 1/2)) has a simple pole at sl. This happens if both rep- 

resentations are the lift from some automorphic representation on SO2(A). 
/-~ .JGL2 . .~1/2 

Denote E~,~,8~(g) = Ress=~E~,~(g,s). In particular, if . . . .  B(GL2)ttlUB(GL2) 
S L 2  1/2 and [~tdB(sL2)It25B(SL2) are the unramified induced representations correspond- 

ing to ~-and a, then #l(diag(a, b)) = x(ab -1) and it2(diag(a,a-1)) = x(e). 

Hence, if we write the unramified parameters of the local component of E~,~,~, 

we easily see that  it is a constituent of Ind~x'5~/2. Here Q is the maximal 

parabolic subgroup of G whose Levi part is GL3, and for h E GL3 we have 

x'(h) = x(det h). It is a matter  of double coset calculation to show that  this 

local induced representation does not support any local functional which corre- 

sponds to a global Fourier coefficient associated with the unipotent orbits that  

are greater than (23). From this we deduce that  omint(2 G tt ,2)) < (23). 

To verify Conjecture 5.6, we need to prove that  ominH2 -- c, ~ ,2)) (23). To do 

that,  consider the integral 

Ill 1 Y3 x2 Yl 

(16) f Er,~ 1 y4 Y3 Xl 
F\A)6 1 g, s 

1 
1 

r  + x2)dxidyj, 

Here and below, we represent the group G in matrices according to the form as 

defined in [G-J-R]. Since the stabilizer of r inside GL3 is S03, it follows that  

the Fourier coefficient (16) corresponds to the unipotent orbit (23). We claim 

that  there is a choice of data  such that  integral (16) is not zero. Assume not. 

Arguing in a similar way to [G-R-S4] Theorem 1 and Lemmas 1 and 2 on pages 

889-898, we deduce that  integral (16) is zero for each choice of data, if and only 
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if the integral 

(17) 
x 

1 
1 

is zero for each choice of data. Here, U(P) is the unipotent radical of the 

parabolic subgroup P. Since T and ~ are generic, it follows that  integral (17) is 

nonzero for some choice of data. 

So far, we have proved that  O"~ax(/2 2) = (6) and ( ~ m i n / / 2  2)  ~-- (23) The G ~,~, , G ~,~, , " 

relevant graph of all unipotent orbits for the group Sp6 is given by 

(6) 
I 

(42) 
/ \ 

(412 ) (32 ) 

\ / 
(23 ) 

Besides (412), all orbits are special. Next, we shall give an example so that  

Oa(E~,a (g, s)) = (42). To do that,  let T denote a self-dual cuspidal representa- 

tion of GL2(A) and let a denote a cuspidal representation defined on SL2(A) 

such that  Ls(r x a, 1/2) is nonzero. From the above discussion about the poles 

of E~,~(g,s), we deduce that  it has a simple pole at the point s2 = 6/10. We 

denote the residue by E~,z,s2(g). It follows from [G-J-R] Proposition 7.1 that  

this residue representation has a nonzero Fourier coefficient corresponding to the 

unipotent orbit (412). Since this orbit is non-special, it follows that  E~-,~,s2 (g) 
has a nonzero Fourier coefficient corresponding to the unipotent orbit (42). 

Since E~,~,s2 (g) is not generic, it thus follows that  Oo(E~,~,s2) = (42). 

At this point it is not clear whether there is a choice of data  so that  Oa(Er,~,s2) 
= (32). There is some indication that  it is possible, but we prefer not to specu- 

late on this any further. 
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